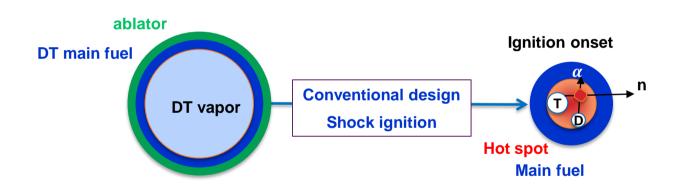

Inertial Fusion Energy Target Designs with Advanced Laser Technologies

V. N. Goncharov
University of Rochester
Laboratory for Laser Energetics


IFE Science & Technology Community Strategic Planning Workshop 22–24 February 2022

In the hot-spot ignition approach, the hot spot initiates a burn wave into the main fuel

Hot-spot ignition approach

Compared to the current ICF implosions, the high-gain/IFE designs operate in somewhat different regions in the implosion parameter space

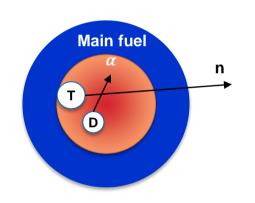
Current implosions

High-gain designs

- Maximize shell kinetic $E_{
 m k}$ and hot-spot $E_{
 m hs}$ energy
- Maximize implosion velocity ($v_{
 m imp} > 4 imes 10^7$ cm/s)
- Fuel adiabat must be above a threshold value set by implosion stability
 - Penalty on convergence and ρR

- Fuel mass is maximized
- Reduced implosion velocity ($v_{
 m imp} < 3 imes 10^7$ cm/s)
- Fuel must be kept close to Fermi degeneracy
 - Maximize convergence and ρR

How to bridge the gap?


By increasing the drive pressure! IFE will require new drivers.

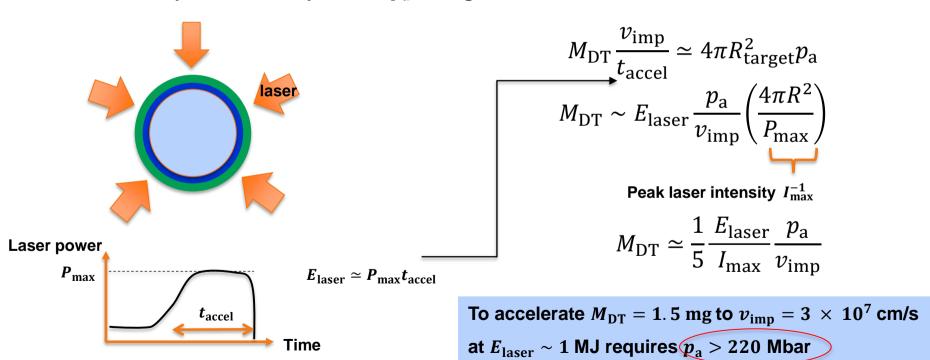
The drive pressure is key to the success of IFE

Let's review IFE fundamentals

• Neutron yield:
$$Y_{\rm n}=M_{\rm burn}\epsilon_{\rm DT}$$
, $\epsilon_{\rm DT}=2.75\times 10^{11} {\rm J/g}$

$$M_{\rm burn} = 3.7 \,\mu \rm g$$
 for $Y_{\rm n} = 1 \,\rm MJ$

- If we want to get $Y_n = 100 \text{ MJ}$: $M_{\text{burn}} = 0.37 \text{ mg}$
- Burn fraction $f_{\rm burn} \sim 1/4$: $M_{\rm DT} = 1.5$ mg
- We want to accelerate this mass to $v_{\rm imp} = 3 \times 10^7 \, {\rm cm/s}$
- We will need $E_{\rm k}=(M_{
 m DT}\,v_{
 m imp}^2)/2=70\,{\rm kJ}$
- Current NIF: $E_{\rm k}\sim 20~{\rm kJ}$
- Scaled LDD OMEGA implosions to NIF energies : $E_{\rm k}$ =60 to 80 kJ


Energetically, LDD makes more sense for IFE but it must remove one obstacle first!

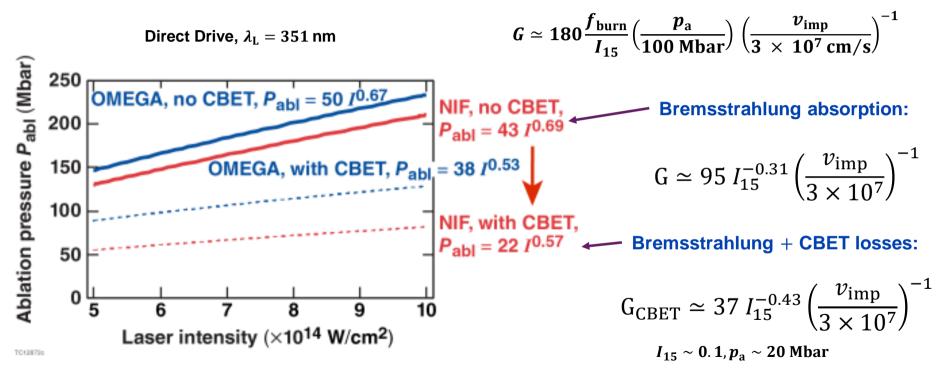
Accelerating the required amount of fuel sets the requirement on ablation pressure

Laser irradiation provides drive pressure p_a through mass ablation

Target gain is a simple relation between ablation pressure, implosion velocity, and peak drive intensity

$$M_{\rm DT} \simeq \frac{1}{5} \frac{E_{\rm laser}}{I_{\rm max}} \frac{p_{\rm a}}{v_{\rm imp}}$$

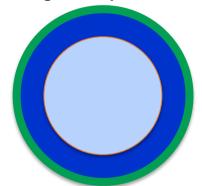
$$G = f_{\rm burn} M_{\rm DT} \epsilon_{\rm DT} / E_{\rm L}$$


$$G \simeq 180 \frac{f_{\text{burn}}}{I_{15}} \left(\frac{p_{\text{a}}}{100 \text{ Mbar}}\right) \left(\frac{v_{\text{imp}}}{3 \times 10^7 \text{ c m/s}}\right)^{-1}$$

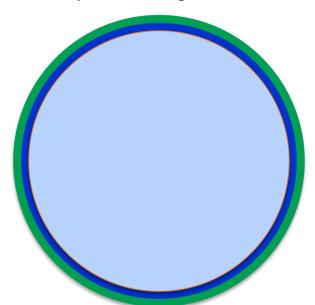
For LDD implosions $p_a = p_a(I)$ depends on thermal conduction and LPI.

Ablation pressure depends on physics details

Maximizing fuel mass pushes the design to use lower drive intensities.


What's wrong with using lower drive intensities and pressures

I. Target Stability


severe constraints on target quality and beam uniformity

High drive pressure

$$IFAR \sim rac{v_{
m imp}^2}{p_{
m a}^{rac{2}{5}} lpha^{rac{3}{5}}}$$

Low drive pressure, longer acceleration distance

To accelerate fuel mass $M_{\rm DT}$ with lower drive pressure requires high-aspect-ratio shells.

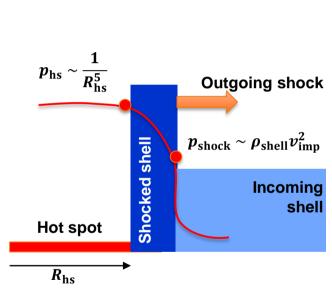
What's wrong with using lower drive intensities and pressures


II. Creating an igniting hot spot is challenging

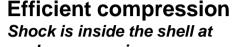
Lower drive pressure requires more laser energy for ignition

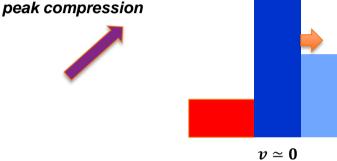
$$(\rho R)_{hs}T_{hs} = 0.3 \frac{g}{cm^2} \times 5 \text{ keV} \rightarrow$$

$$P_{
m hs}R_{
m hs}>1$$
 Gbar $imes$ cm, $T_{
m i}>$ 4.5 keV


$$E_{\rm hs} > 16 \text{ kJ} \left(\frac{R_{\rm hs}}{50 \ \mu \text{m}}\right)^2$$

- Shell must provide efficient confinement to maximize hot-spot pressure
 - Maximum hot-spot convergence must be reached before shell starts to disassemble




If the shell's dynamic pressure ($\rho_{\rm shell}v_{\rm imp}^2$) is too low, the shell cannot support high hot-spot pressures ($p_{\rm hs} \sim v_{\rm imp}^3$)

The shocked shell is decelerated by pressure gradient

$$\frac{p_{\rm hs}-p_{\rm shock}}{\Lambda}$$

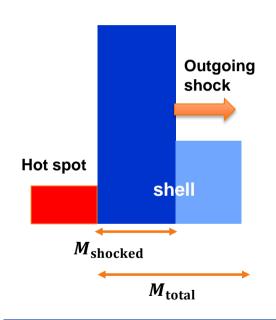
Maximum hot-spot pressure for given implosion parameters $(v_{\mathrm{imp}}, \alpha)$

$$p_{\rm hs} \sim \frac{p_{\rm a}^{\frac{1}{3}} v_{\rm imp}^3}{\alpha}$$

Inefficient compression

Shock breaks out of the shell before stagnation

 $v \neq 0$


- Shell starts to disassemble from outside
- Hot-spot convergence and pressure are limited by shell mass

$$p_{\rm hs} < \frac{p_{\rm a}^{\frac{1}{3}} v_{\rm imp}^3}{\alpha}$$

Maximum hot-spot convergence must be reached before the outgoing shock breaks out of the shell

Efficient compression:

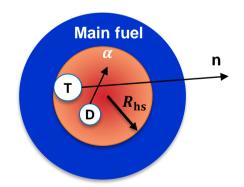
Shock inside the shell at peak compression:

$$M_{\text{shocked}} < M_{total}$$

$$v_{\text{imp}} < 2.6 \times 10^7 \frac{\text{cm}}{\text{s}} \alpha^{0.3} \left(\frac{p_a}{100 \text{ Mbar}}\right)^{0.65}$$

Ablation pressure sets the limit on the maximum implosion velocity for an efficient piston.

What's wrong with using lower drive intensities and pressures


Creating igniting hot spot is challenging

Lower drive pressure requires **MUCH** more laser energy for ignition

$$(\rho R)_{\rm hs} T_{\rm hs} = 0.3 \frac{\rm g}{{\rm cm}^2} \times 5 {\rm keV} \rightarrow$$

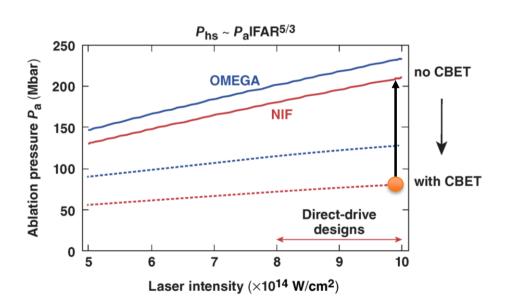
$$P_{
m hs}R_{
m hs}>1$$
 Gbar $imes$ cm, $T_{
m i}>$ 4.5 keV

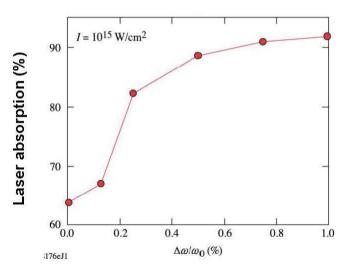
$$P_{\rm hs}R_{\rm hs} > 1~{
m Gbar} imes {
m cm}, \, T_{
m i} > 4.5~{
m keV}$$
 $E_{
m hs} > 16~{
m kJ} \left(\frac{R_{
m hs}}{50~\mu{
m m}} \right)^2$

$$v_{\rm imp} < 2.6 \times 10^7 \frac{\rm cm}{\rm s} \ \alpha^{0.3} \left(\frac{p_{\rm a}}{100 \, \rm Mbar}\right)^{0.65}$$

$$E_{\rm k}({\rm kJ}) > 156 \left(\frac{p_{\rm a}}{100 \, \rm Mbar}\right)^{-5}$$

Current LID: $P_a \simeq 150 \, \text{Mbar} \rightarrow E_k > 20 \, \text{kJ}$ – right at the edge

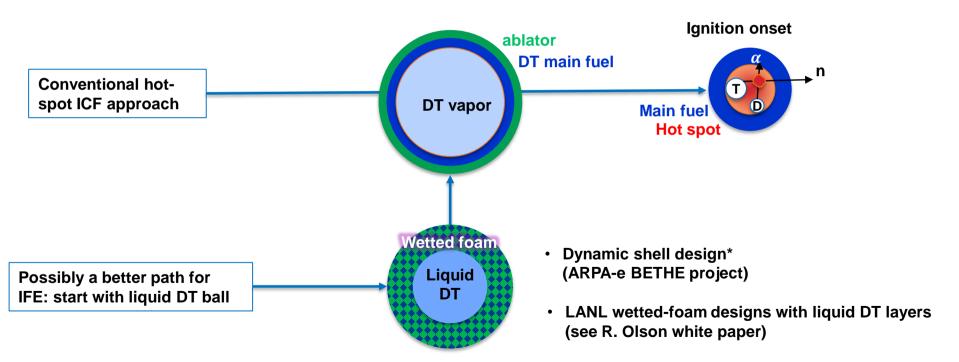

Required energy increases rapidly with reduced drive pressure $P_a = 100 \, \text{Mbar} \rightarrow E_k > 156 \, \text{kJ}$


The path forward for laser-driven IFE is to reduce LPI losses and maximize ablation pressure with broadband lasers ENERGY Office of Science

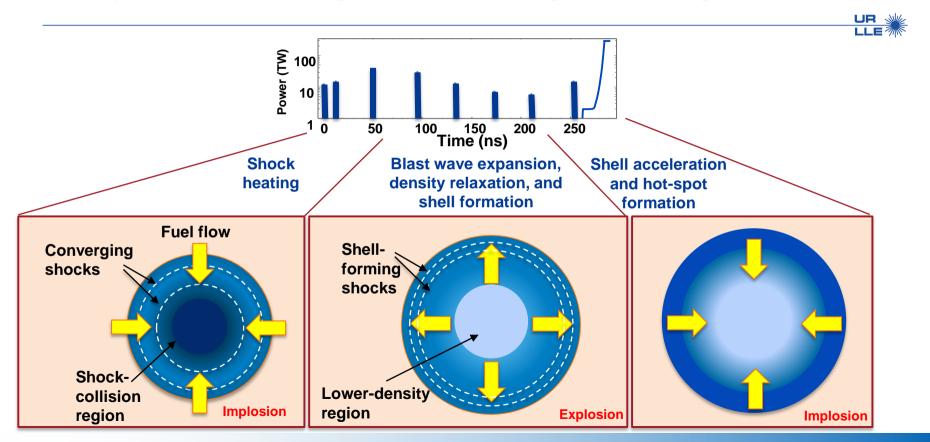
Crossed-beam energy transfer (Increased drive pressure)

Broadband illumination also mitigates imprint

A shorter-wavelength ArF driver also provides improved ablation pressures (see talk by S. Obenschain and whitepapers from NRL)



Targets for IFE must be cheap!



Hot-spot ICF approach

The dynamic shell design evolves through three stages

Priority list for laser-drive IFE

1) Demonstrate the engine

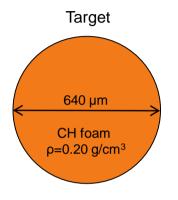
- Broadband glass lasers (Jon Zuegel's talk)
- Excimer lasers, ArF (Steve Obenschain)

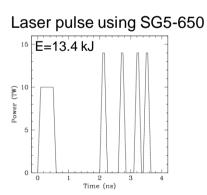
Recommendation:

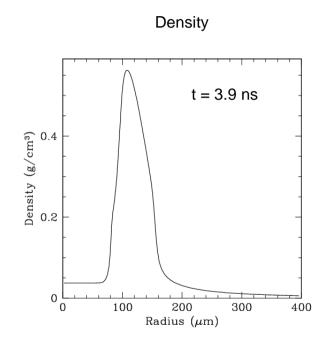
- A single-beam prototype should test feasibility of laser meeting efficiency, high rep-rate requirements
- A test compression facility must provide data on improved drive pressures and reduced LPI; LPI is multibeam phenomena so single-beam test beds will not deliver the required validation

2) Demonstrate feasibility of cheap targets

- Recommendations: Wetted-foam ablators must be validated on current facilities (OMEGA)
 - Several stages of advanced designs (i.e., dynamic shell concept) can be tested on current lasers (proof-of-principle experiments)

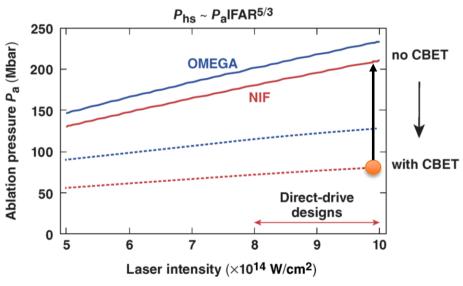



BACKUP slides

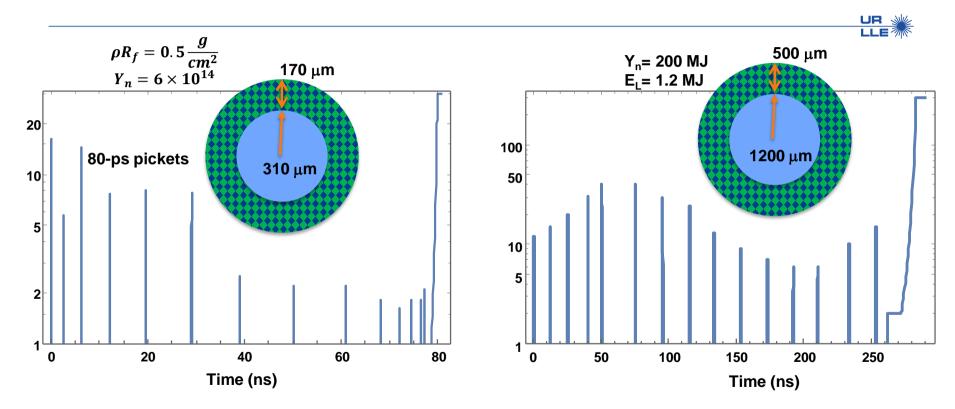


Proof-of-principle experiments are scheduled on OMEGA on 16 August 2022 as part of the LBS program

Backlighting at 1.85 keV (400 eV source)



LPI coupling losses shift the laser deposition region further out into plasma corona



Further improvement in ablation pressure can be achieved through beam zooming; shorter-wavelength driver (ArF) is also helpful

Pulse shape consists of set of pickets and the main drive pulse

